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SI. Crower-oxDNA Model Details

OxDNA and its interaction potentials have been described
in detail elsewhere1–4. In this work, we use the average-
strength parameterization of the model from reference4. The
model represents DNA as a 1D chain of nucleotides, where
each nucleotide (sugar, phosphate and base group) is a rigid
body with three interaction sites. The potential energy of
the system can be decomposed as

𝑉 =
∑︁
⟨𝑖𝑗⟩

(︁
𝑉b.b. + 𝑉stack + 𝑉

′

exc

)︁
+ (S1)

∑︁
𝑖,𝑗 /∈⟨𝑖𝑗⟩

(𝑉HB + 𝑉cr.st. + 𝑉exc + 𝑉cx.st. + 𝑉DH + 𝑉crow. exc.)

where the first sum is taken over all nucleotides that are
nearest neighbors on the same strand and the second sum
comprises all remaining pairs. The interactions between
nucleotides are schematically shown in Fig. S1. The back-
bone potential 𝑉b.b. is an isotropic spring that imposes a
finite maximum distance between backbone sites of neighbors,
mimicking the covalent bonds along the strand. The hydro-
gen bonding (𝑉HB), cross stacking (𝑉cr.st.), coaxial stacking
(𝑉cx.st.) and stacking interactions (𝑉stack) are anisotropic
and explicitly depend on the relative orientations of the

FIG. S1. The oxDNA model. A DNA duplex as modeled in
oxDNA with labels corresponding to the coarse-grain potentials
defining the force field.
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nucleotides as well as the distance between the relevant in-
teraction sites. This orientational dependence captures the
planarity of bases, and helps drive the formation of helical
duplexes. The coaxial stacking term is designed to capture
stacking interactions between bases that are not immedi-
ate neighbors along the backbone of a strand. Base and
backbone sites also have excluded volume interactions 𝑉exc

and 𝑉
′

exc. Finally, we treat the electrostatic interactions us-
ing the Debye-Huckel approximation (𝑉DH), with effective
charges parameterized to reproduce the stability of short
duplexes at sodium concentrations ranging from 0.1 to 1 M4.
Hydrogen-bonding interactions are only possible between
complementary (A-T and C-G) base pairs. In the average-
strength parameterization that we use for all simulations,
the strengths of interactions 𝑉stack and 𝑉HB are set to be
the same for all types of nucleotides, parameterized to repro-
duce melting thermodynamics of short duplexes and hairpins
with average-sequence content as predicted by SantaLucia’s
nearest-neighbor model5.

To account for the presence of the crowders, we introduce
a new interaction potential 𝑉crow. exc. into the oxDNA model,
that consists of the following terms:

𝑉crow. exc. = 𝑉crowder crowder + 𝑉crowder back + 𝑉crowder base

(S2)
where the RHS of Eq. S2 correspond to the excluded volume
interaction between two crowders, between a crowder and a
nucleotide’s backbone site, and between a crowder and the
nucleotide’s base site respectively. The functional form of
the crowder excluded volume interaction potential is given
by

𝑓exc(𝑟, 𝜖, 𝜎, 𝑟
⋆) =

⎧⎪⎨⎪⎩
𝑉LJ(𝑟, 𝜖, 𝜎) if 𝑟 < 𝑟⋆,

𝜖𝑉smooth(𝑟, 𝑏, 𝑟cut) if 𝑟⋆ < 𝑟 < 𝑟cut,

0 otherwise.

(S3)
which consists of a Lennard-Jones potential function

𝑉LJ(𝑟, 𝜖, 𝜎) = 4𝜖

[︂(︁𝜎
𝑟

)︁12

−
(︁𝜎
𝑟

)︁6
]︂
. (S4)

that is truncated using the quadratic smoothing function

𝑉smooth(𝑥, 𝑏, 𝑥𝑐) = 𝑏(𝑥𝑐 − 𝑥)2, (S5)

ensuring that the potential is a differentiable function that
is equal to 0 after a specified cutoff distance 𝑟cut. We set
𝑟* = 2𝑟c (where 𝑟c is crowder radius) for the crowder-crowder
interaction, and to 𝑟* = 𝑟c + 𝑟b for the interaction with the
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Crowder Interaction Parameters

Radius 0.85 nm
𝑉crowder−crowder

𝑓exc(𝛿𝑟crowder−crowder) 𝜖exc = 2.00 𝜎 = 2.05 𝑟⋆ = 2.00 𝑏 = 113.8 𝑟cut = 2.08
𝑉crowder−back

𝑓exc(𝛿𝑟crowder−back) 𝜖exc = 2.00 𝜎 = 1.4 𝑟⋆ = 1.35 𝑏 = 2897 𝑟cut = 1.42
𝑉crowder−base

𝑓exc(𝛿𝑟crowder−base) 𝜖exc = 2.00 𝜎 = 1.22 𝑟⋆ = 1.17 𝑏 = 17111 𝑟cut = 1.24
Radius 1.7 nm
𝑉crowder−crowder

𝑓exc(𝛿𝑟crowder−crowder) 𝜖exc = 2.00 𝜎 = 4.05 𝑟⋆ = 4.00 𝑏 = 41.77 𝑟cut = 4.09
𝑉crowder−back

𝑓exc(𝛿𝑟crowder−back) 𝜖exc = 2.00 𝜎 = 2.40 𝑟⋆ = 2.35 𝑏 = 88.50 𝑟cut = 2.43
𝑉crowder−base

𝑓exc(𝛿𝑟crowder−base) 𝜖exc = 2.00 𝜎 = 2.22 𝑟⋆ = 2.17 𝑏 = 100.4 𝑟cut = 2.25
Radius 2.56 nm
𝑉crowder−crowder

𝑓exc(𝛿𝑟crowder−crowder) 𝜖exc = 2.00 𝜎 = 6.05 𝑟⋆ = 6.0 𝑏 = 25.0 𝑟cut = 6.09
𝑉crowder−back

𝑓exc(𝛿𝑟crowder−back) 𝜖exc = 2.00 𝜎 = 3.40 𝑟⋆ = 3.35 𝑏 = 53.0 𝑟cut = 3.44
𝑉crowder−base

𝑓exc(𝛿𝑟crowder−base) 𝜖exc = 2.00 𝜎 = 3.22 𝑟⋆ = 3.17 𝑏 = 57.4 𝑟cut = 3.25

TABLE S1. Parameter values in the model. All parameter values are in terms of the simulation units of energy and distance, with one
length unit equivalent to 8.518 Å, and one energy unit to 41.42 pNnm.

backbone site or the base site, where 𝑟b corresponds to the
radius of the backbone site or the base site in the oxDNA
model respectively.

The parameters for each of the respective terms of
𝑉crow. exc. potential are listed in Table S1 for the crowder
radii 0.85, 1.7 and 2.56 nm respectively. For interaction po-
tentials shown in Table S1, 𝛿𝑟crowder−back corresponds to
the distance between the center of the crowder sphere and
the backbone site on the nucleotide in the oxDNA model,
and 𝛿𝑟crowder−base is the distance between the center of the
crowder sphere and the base site of the nucleotide. Finally,
𝛿𝑟crowder−crowder is the distance between the centers of two
crowder spheres.

As discussed in the main text, oxDNA has been extensively
tested for other DNA properties and systems to which it was
not fitted. Our success in describing all these phenomena
gives us confidence to use it to study the dynamics of hy-
bridization, hairpin formation, and strand displacement in
the presence of crowders.

SII. Simulation Methods

A. Thermodynamics

1. Virtual Move Monte Carlo

A standard approach for calculating the thermodynamic
properties of computational models is the Metropolis algo-
rithm6. A drawback with this approach is that only moving

single particles at a time results in slow equilibration for sys-
tems with strong attractions. This is true for DNA strands,
where collective diffusion is strongly suppressed if nucleotides
are moved individually. Simulations can be made more effi-
cient by using the Virtual Move Monte Carlo (VMMC), which
allows for collective diffusion using cluster moves of particles7.
Specifically, we use the variant presented in the appendix of
reference 7. Initially, a particle is selected, and a move is
chosen at random as in the Metropolis algorithm. The parti-
cle’s neighbors are then added to a co-moving‘cluster’ with
probabilities determined by the energy changes that would
result from the move. Consequently, multiple particles tend
to move at once. To use VMMC, we must select ‘seed’ moves
of a single particle. For all VMMC simulations reported here,
the seed moves were:

∙ Rotation of a nucleotide about its backbone site, with
the axis chosen uniformly on the unit sphere and
the angle drawn from a normal distribution with
a mean of zero and a standard deviation of 0.22 radians.

∙ Translation of a nucleotide, where the displacement
along each Cartesian axis is drawn from a normal dis-
tribution with a mean zero and a standard deviation
of 0.15 simulation units of length (0.1277 nm).
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2. Umbrella Sampling

An important concept is that of a reaction coordinate (or
order parameter) 𝑄, which groups together microstates of a
system that share some macroscopic property (for example,
all configurations of strands with a certain number of base
pairs). The free-energy profile as a function of 𝑄 can provide
useful information about the reaction, provided an appropri-
ate choice has been made. Free-energy barriers can make
certain regions of configuration space hard to reach, which
prevents efficient sampling of all of the states of interest.
The free-energy landscape can be artificially flattened by
weighting states with different values of 𝑄 appropriately, a
technique known as umbrella sampling8. Thermodynamic
properties of the system can then be extracted from simula-
tions by unweighting the resulting distributions.

In particular, for an unweighted simulation a particular
microstate with coordinates q𝑁 and energy 𝐸(q𝑁 ) is sampled
with probability

𝑃 (q𝑁 ) ∝ 𝑒−𝛽𝐸(q𝑁 ). (S6)

The equilibrium average of some variable 𝐴(q𝑁 ) is then given
by the sum over all states, weighted by their Boltzmann
factors:

⟨𝐴⟩ =

∫︀
𝐴(q𝑁 )𝑒−𝛽𝐸(q𝑁 )𝑑q𝑁∫︀

𝑒−𝛽𝐸(q𝑁 )𝑑q𝑁
. (S7)

By applying a weighting 𝑤 = 𝑤(𝑄(q𝑁 )) to each value of the
order parameter, we change the sampling frequency to

𝑃𝑤(q𝑁 ) ∝ 𝑤(𝑄(q𝑁 ))𝑒−𝛽𝐸(q𝑁 ). (S8)

where the subscript 𝑤 indicates a property of the weighted
system. So we can artificially ensure that our simulation
samples all states equally by making 𝑃𝑤 constant for all
microstates. Equilibrium thermodynamic properties are then
obtained by unbiasing afterwards, as can be seen by rewriting
Eq. (S7) as follows:

⟨𝐴⟩ =

∫︀ 𝐴(q𝑁 )
𝑤(𝑄(q𝑁 ))

𝑤(𝑄(q𝑁 ))𝑒−𝛽𝐸(q𝑁 )𝑑q𝑁∫︀
1

𝑤(𝑄(q𝑁 ))
𝑤(𝑄(q𝑁 ))𝑒−𝛽𝐸(q𝑁 )𝑑q𝑁

(S9)

=
⟨𝐴/𝑤⟩𝑤
⟨1/𝑤⟩𝑤

. (S10)

Throughout this article, it makes sense to use the number of
base pairs in our definition of 𝑄. This is the usual choice for
studying hybridization processes.

The weights used in our simulation were found iteratively,
first by making an educated guess for the approximate values
and then iteratively adjusting them so that the simulation
would sample all values of 𝑄 and spend approximately the
same amount of time in each state corresponding to sampled
values of 𝑄. The final values are available in the github
repository along with our code.

B. Kinetics

1. Molecular Dynamics

Kinetic simulations were performed using an Anderson-like
thermostat, similar to the one described in appendix A of
reference 9. The Newtonian equations of motion for the
system are integrated by Verlet integration10 with a discrete
time-step 𝛿𝑡, so that the positions, velocities, orientations,
and angular velocities of the nucleotides are recalculated
at each time-step. This alone would give the DNA strands
constant energy and cause ballistic motion. In reality, DNA
in a solvent is being bombarded by water particles and thus
undergoes Brownian motion. To model Brownian motion,
the velocity of each nucleotide is resampled with a probability
𝑝𝑣 = 0.02 from a Maxwell-Boltzmann distribution at the tem-
perature of the solvent every 103 time steps. The algorithm
also resamples angular velocities with a different probability
𝑝𝜔 = 0.0067. The solvent thus acts as a large heat bath
at a fixed temperature, ensuring that the simulated system
samples from the canonical ensemble. On time scales longer
than 𝑁𝑁𝑒𝑤𝑡𝛿𝑡/𝑝𝑣, where 𝛿𝑡 is the integration time step, the
dynamics is diffusive. We choose 𝛿𝑡 = 1.52 × 10−14s for all
dynamics simulations in this study. In oxDNA this time step
gives a diffusion constant 𝐷𝑠𝑖𝑚 for a 14-mer duplex that is
about 100 times higher than experimental measurements11

of 𝐷𝑒𝑥𝑝 = 1.19 × 10−10 m2 s−1.

This artificial increase in 𝐷𝑠𝑖𝑚 is a common procedure
for coarse-grained models where higher diffusion constants
can be used to accelerate diffusion. Accelerated diffusion
can also speed up certain processes by smoothing out, on a
microscopic scale, energy profiles12. This can be advanta-
geous because it means simulations utilizing coarse-grained
models can be used to study more complicated systems. In
a previous study using oxDNA, the hybridization kinetics of
a non-repetitive sequence was considered13. In that study, it
was shown that using higher friction constants (smaller diffu-
sion coefficients) in simulations utilizing Langevin dynamics
at 300K slowed down hybridization, but did not otherwise
qualitatively affect the results. In particular, the tendency
for initial base pairs to melt away rather than lead to a full-
duplex was found to be preserved. Our systems are similar
to those studied in reference 13, possessing similar numbers
of total base pairing between the strands, and using a similar
simulation temperature. Additionally, many approximations
of real DNA have already been made in the construction of
the oxDNA model, and we expect that running simulations
with a diffusion coefficient that is larger than the experi-
mentally measured value should preserve the effects that
hairpins in single strands have on the relative hybridization
and dissociation rates.

2. Forward Flux Sampling

‘Brute force’ dynamics simulations using an Anderson-like
thermostat are not efficient enough to generate a representa-
tive ensemble of trajectories that start in the single-stranded
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FIG. S2. (Color online) (a) Schematic illustration of the interfaces
involved in flux generation. The flux is initially measured across the
interface 𝜆0

−1. The orange dots indicate that a crossing by a trajectory
contributes to the flux. These are also the states that are used to launch
successive stages of the simulation. (b) In direct FFS, large numbers
of configurations are randomly selected from the set that successfully
crossed the interface 𝜆0

−1, and the probability of subsequently crossing

the 𝜆1
0 interface (rather than returning to 𝑄 = −2) is measured. The

process is then iterated over successively chosen interfaces until reaching
𝑄max. Figure adapted from reference 13.

state and end in the duplex state. Thus, we resorted to using
Forward Flux Sampling (FFS) to more efficiently calculate
fluxes between local free-energy minima as well as sample
the transition pathways. The term ‘flux’ from (meta)stable
state A to state B has the following definition:

Given an infinitely long simulation in which many tran-
sitions are observed, the flux of trajectories from A to B is
Φ𝐴𝐵 = 𝑁𝐴𝐵/(𝜏𝑓𝐴), where 𝑁𝐴𝐵 is the number of times the
simulation leaves A and then reaches B, 𝜏 is the total time
simulated, and 𝑓𝐴 is the fraction of the total time simulated
for which state A has been more recently visited than state
B.

FFS requires use of an order parameter, 𝑄, which provides
a descriptive measure of the extent of the reaction between
states A and B. Additionally, the order parameter must be

chosen such that non-intersecting interfaces 𝜆𝑄
𝑄−1 can be

drawn between consecutive values of 𝑄. At the beginning
of an FFS implementation, a brute force simulation is run
starting from states described by 𝑄 = -2, and the flux of
trajectories crossing the surface 𝜆0

−1 is measured. The total
flux of trajectory from 𝑄 = -2 to another free-energy mini-
mum 𝑄 = 𝑄𝑚𝑎𝑥 can be calculated as the flux of trajectories
crossing 𝜆0

−1 multiplied by the probability that trajectories
subsequently reach 𝑄 = 𝑄max, all before returning to 𝑄 =
-2. The probability can be factorized as

𝑃
(︁
𝜆𝑄max

𝑄max−1|𝜆
0
−1

)︁
=

𝑄max∏︁
𝑄=1

𝑃
(︁
𝜆𝑄
𝑄−1|𝜆

𝑄−1
𝑄−2

)︁
. (S11)

The first term in the product on the right-hand size of Eq. S11
is calculated by loading random configurations that have just
crossed 𝜆0

−1, which are used to estimate 𝑃 (𝜆1
0|𝜆0

−1). The
process is then iterated for successive interfaces, and the flux
as well as the trajectories that successfully reach 𝑄𝑚𝑎𝑥 from
the distribution of pathways can be measured.

SIII. Simulation Protocols

In this section, we discuss the implementation of the algo-
rithms of Section SII for both single-stranded and duplex sys-
tems. We simulated the hairpin formation, duplex formation,
and toehold-mediated strand displacement systems using
FFS and VMMC simulations. We used a ‘bonds’ order pa-
rameter that measures the total number of base pairs, which
can be specified to be intra- (for hairpins) or inter-strand (for
duplexes and stand displacement) base pairs. The definition
of a bonded base pair in our simulations is two bases with a
hydrogen bonding energy below 0.596 kcal mol−1. This value
for the selected cutoff corresponds to about 15% of typical
hydrogen-bond energy. In FFS simulations, we additionally
used a ‘distance order parameter’ to measure the minimum
distance between hydrogen-bonding sites overcorrect pairs
of bases in the two strands.

1. Duplex and Hairpin Thermodynamics

For the duplex and hairpin formation, we defined order
parameters as the number of native bonds present in the stem
for hairpins, and between two duplexes. The weights were
manually adapted in order to assure proper sampling of all
values of the order parameter. For each condition studied (as
defined by crowder radius 𝑟c and volume fraction 𝜑 occupied
by crowders), we run at least three separate replicas of a free-
energy calculation. The unbiased number of states for each
value of the order parameter (using the procedure outlined
in Sec. SII A 2) were used to plot the free-energy diagram.
Histogram re-weighting was used to extrapolate free-energy
profiles to other temperatures that the one at which the
VMMC umbrella sampling simulations were run.

For each of the studied crowding conditions, we ran at
least three independent umbrella sampling simulations. The
error bars shown in the free-energy profiles in the main text
in in the Supporting Information correspond to the standard
deviation for the given value from all replicas for a given
system. Each VMMC umbrella sampling simulation was run
for at least 109 steps.

For the melting temperature calculation in duplex forma-
tion simulations, care must be taken in extrapolating from
a simulation of two strands to a bulk solution with many
more strands, because fluctuations in local concentrations
play an important role. If Φ is the ratio of bound to unbound
states in a simulation of two molecules, the yield of a non-
self-complementary duplex in a bulk solution (with the same
average concentration of reactants) is given in reference 14
as

𝑓dim
bulk =

(︂
1 +

1

2Φ

)︂
−

√︃(︂
1 +

1

2Φ

)︂2

− 1. (S12)

The melting temperature occurs when 𝑓dim
bulk = 1/2, which

corresponds to a simulation yield of 𝜑 = 2.
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𝑄 Description

-2 𝑑 > 3.40 nm

-1 0.85 nm < 𝑑 ≤ 3.40 nm

0 𝑑 ≤ 0.85 nm & 𝑥 = 0

1 𝑥 ≥ 1

2 𝑥 ≥ 8

TABLE S2. The order parameter used in FFS simulations of
duplex hybridization. The parameter 𝑑 is the minimum distance
between any intended base pair on the two strands, 𝑥 is the
number of base pairs between the two strands. A base pair is
taken to be present if the hydrogen-bonding energy is less than
−0.596 kcalmol−1 for x

𝑄 Description

-2 𝑑 > 3.40 nm

-1 0.85 nm < 𝑑 ≤ 3.40 nm

0 𝑑 ≤ 0.85 nm & 𝑥 = 0

1 𝑥 ≥ 1

2 𝑥 ≥ 6

TABLE S3. The order parameter used in FFS simulations of
hairpin closing. The parameter 𝑑 is the minimum distance between
any intended base pair on the two strands, 𝑥 is the number of base
pairs between the two strands. A base pair is taken to be present
if the hydrogen-bonding energy is less than −0.596 kcalmol−1 for
x

A. Kinetics

1. FFS Simulation Details

In this section, we discuss the implementation of the FFS
algorithm, discussed in Section SII. As mentioned in Sec-
tion SII B 1, we simulated the duplex, hairpin, and strand
displacement systems using molecular dynamics at 𝑇 = 37∘
∘C. We also use the same definition of a bonded base pair
that was discussed in Section SIII.

2. Order Parameter Used in FFS Simulations

The order parameter used in the simulations are detailed
in Tables S3, S2, and S4 for hairpins, duplex formation,
and strand displacement respectively. Specifically, we use a
combination of distance and base pairing criteria as outlined
in Section SIII. Distance criteria are used to define states
𝑄 = −2 → 2, and bonding criteria for states 𝑄 =≥ 0. In all
the FFS simulations, the strands are designed to only allow
for base pairs between correctly aligned native base pairs.

The flux is measured using a brute force simulations, count-
ing the number of states per unit time that pass through
interface 𝑄 = 0 coming from state 𝑄 = −2. The transi-

𝑄 Description

-2 𝑑 > 3.40 nm

-1 0.85 nm < 𝑑 ≤ 3.40 nm

0 𝑑 ≤ 0.85 nm & 𝑥 = 0

1 𝑥 ≥ 1

2 𝑥 ≥ 6

3 𝑥 ≥ 16

TABLE S4. The order parameter used in FFS simulations of
strand displacement. The parameter 𝑑 is the minimum distance
between any intended base pair on the two strands, 𝑥 is the
number of base pairs between the two strands. A base pair is
taken to be present if the hydrogen-bonding energy is less than
−0.596 kcalmol−1 for x

tion probabilities that we measure for hairpin (or duplex
or strand displacement) correspond to transition through
interfaces 𝜆𝑖+1

𝑖 for 𝑖 = 0 and 𝑖 = 1 (and also 𝑖 = 2 for strand
displacement).

SIV. Scaled Particle Theory

For reactions of the type P(solution) ↔ P(aggregate),
which include here the unimolecular hairpin folding and the
bimolecular duplex formation reactions, the thermodynamic
solubility constant absent crowders may be written15

𝒦0
𝑠 = 1

𝑎𝑠
(S13)

= 1
𝛾𝑠𝑐𝑠

(S14)

where 𝑎𝑠 is the activity, 𝛾𝑠 is the activity coefficient, and 𝑐𝑠 is
the concentration of ssDNA. When crowders are present (𝜑 >
0), the equilibrium constant 𝒦𝑠 is taken to be proportional
to that absent crowders as

𝒦𝑠 ≡ 𝒦0
𝑠𝛾𝑠. (S15)

In the main text we showed that both the thermodynamics
and kinetics results results obtained from oxDNA simulations
for a variety of crowder sizes and concentrations confirm that
crowders do not significantly influence dissociation of hairpins
or duplexes. As a result we may write

ln

(︂
𝑘𝑎
𝑘0𝑎

)︂
≈ ln

(︂
𝒦𝑎

𝒦0
𝑎

)︂
= ln 𝛾𝑠 (S16)

where 𝑘0𝑎, 𝑘𝑎 are the rate constants when crowders are absent
and present at finite 𝜑, respectively.

A. Hairpin Formation

In the case of the unimolecular reaction, an unstructured
single-strand of DNA (said to be in state A) folds into a
hairpin (said to be in state 𝐴*). Both the crowder and the
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ssDNA are assumed to be hard spheres. For this reaction
type, SPT may be used to compute the parameter 𝛾1 as15

ln 𝛾1 = − ln(1 − 𝜑) + 𝐴1𝑧 + 𝐴2𝑧
2 + 𝐴3𝑧

3 (S17)

where

𝐴1 = 𝑅3 + 3𝑅2 + 3𝑅 (S18)

𝐴2 = 3𝑅3 + 4.5𝑅2 (S19)

𝐴3 = 3𝑅3 (S20)

𝑧 =
𝜑

1 − 𝜑
(S21)

where 𝑅 ≡ 𝑟𝑖/𝑟𝑐, 𝑟𝑖 is the radius of a ssDNA (𝑖 may be ℎ𝑝
for the strand that may fold into the hairpin, or 8-mer for
either of the two strands that come together to form the
duplex), and 𝑟𝑐 is the crowder radius.

B. Duplex Formation

In the 8-mer system, two unstructured, complementary
strands of DNA (taken to be states 𝐴 and 𝐴*) come together
to form a duplex (taken to be the state 𝐴𝐴*). The two
unbound ssDNA in states 𝐴 or 𝐴* are again initially modeled
as hard spheres having the same radii 𝑟𝑠. The duplex in
state 𝐴𝐴* is taken to be a hard spherocylinder comprised of
two adjacent (hard-sphere) DNA strands with radius along
the z-axis of the cylinder denoted 𝑟𝑠𝑐, and the ratio of the
axial length to the cylinder diameter is denoted as 𝐿. In
reality, a ‘perfect’ DNA duplex, where strand 𝐴 is the reverse
complement of 𝐴* and vice versa, is cylindrical in shape, but
does not have capped ends, and is only ‘hard’ for lengths
well below the persistence length of DNA (about 150 base
pairs). The duplexes investigated here were only 8 bases long
and as such were extremely rigid.

The activity of a spherocylinder may be estimated from
Eqs. S17-S21 with15

𝐴1 = 𝑅3 + 3𝑅2 + 3𝑅 + 1.5𝐿(𝑅2 + 𝑅 + 1) (S22)

𝐴2 = 3𝑅3 + 4.5𝑅2 + 4.5𝐿(𝑅2 + 𝑅) (S23)

𝐴3 = 3𝑅3 + 4.5𝐿𝑅2 (S24)

𝑧 =
𝜑

1 − 𝜑

and where 𝑅 ≡ 𝑟𝑠𝑐/𝑟𝑐. The (oxDNA validated) assumption
that only the forward rate is primarily influenced by crowders
leads to the expression15–17

ln
(︀
𝒦𝑎/𝒦0

𝑎

)︀
≈ ln 𝛾1 + ln 𝛾𝑛 − ln 𝛾𝑛+1 (S25)

where

ln 𝛾𝑛+1 = ln 𝛾𝑟 +
𝑑 ln 𝛾

𝑑𝑛
(S26)

= ln 𝛾𝑛 +
𝑑 ln 𝛾

𝑑𝐿

𝑑𝐿

𝑑𝑛
. (S27)

According to Eqs. S22-S24 we can write

𝑑 ln 𝛾𝑠𝑐
𝑑𝐿

= 1.5
(︀
𝑅2

𝑠𝑐 + 2𝑅𝑠𝑐 + 1
)︀
𝑧 (S28)

+ 4.5
(︀
𝑅2

𝑠𝑐 + 𝑅𝑠𝑐

)︀
𝑧2 + 4.5𝑅2

𝑠𝑐𝑧
3

where 𝑅𝑠𝑐 = 𝑟𝑠𝑐/𝑟1. Assuming conservation of mass,

𝑑𝐿

𝑑𝑛
=

2

3

(︂
𝑟1
𝑟𝑠𝑐

)︂3

(S29)

so that Eq. S25 may then be expressed as

ln
(︀
𝒦𝑎/𝒦0

𝑎

)︀
= ln 𝛾1 −

𝑑 ln 𝛾𝑠𝑐
𝑑𝐿

𝑑𝐿

𝑑𝑛
(S30)

where the first term on the RHS is computed using Eqs. S17-
S21, and the second using Eq. S28 and Eq. S29. Eqs. S25-S30
has been introduced for a general case where 𝑛 monomers
can associate into a spherocylindrical shape, and in the case
of a duplex, we only use them for 𝑛 = 2.

For both hairpin or duplex formation reactions investigated
here, the relative free-energy difference between crowder-free
and crowded environments, ∆∆𝐺, relates to the equilibrium
constants through

∆∆𝐺𝑠 ≡ ∆𝐺𝑠 − ∆𝐺0
𝑠, (S31)

which can be rewritten for the case of duplex formation as

ln

(︂
𝒦𝑎

𝒦0
𝑎

)︂
≡ ∆∆𝐺𝑠 (S32)

= ∆𝐺𝐴𝐵(𝜑 > 0) − ∆𝐺𝐴𝐵(𝜑 = 0)

− ∆𝐺𝐴,𝐵(𝜑 > 0) + ∆𝐺𝐴,𝐵(𝜑 = 0),

where the left hand side of Eq. S32 is computed according
to SPT, while the right hand side is computed by estimating
the free-energy terms using oxDNA simulations.

Following the approach taken in reference 18, we fit the
SPT model to the oxDNA data by using the radius of the
unfolded single-strand state in each hairpin and duplex sys-
tems as a fit parameter, and the spherocylinder radii 𝑟𝑠𝑐 in
the duplex system. The former measurement represents the
“effective” radius of the unfolded states as the crowder size
and volume fraction varies while the latter is the “effective”
spherocylinder radius. We also ran long MD simulations to
obtain representative trajectories from which we measured
the end-to-end separation 𝑅ee in the single strand states
(Fig. 4(a)(i) and (b)(i)), and the radius of the folded hairpin
state (Fig. 4(a)(ii)) to compare the oxDNA predicted radii
with the fitted effective radii. The sphero-cylindrical radius
of the duplex, 𝑟𝑠𝑐, is illustrated in Fig. 4(b)(ii).

For the unfolded single strands in Fig. 4(a)(i) and (b)(i),
we measured the end-to-end distance 𝑅ee between terminal
bases for the configurations in a trajectory to obtain an
average measurement. For the hairpin shown in Fig. 4(a)(ii),
we measured the average separation between a terminal stem
base and a base in the middle of the loop, that is we measured
the radius two times per configuration, then averaged them
to obtain the effective radius of the folded structure.

In Table S5, we list the fitted radii used to compute the
LHS of Eq. S32 and the computed radii from oxDNA sim-
ulations. The results of the thermodynamics comparison
between SPT and oxDNA are shown in Figure 4 in the main
text. As can be seen in Table S5, we observed no dependence
of oxDNA-computed 𝑅ee on either the investigated values
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𝑟𝑐 𝑟𝑢ℎ𝑝(*) 𝑟𝑢ℎ𝑝(oxDNA) 𝑟𝑓ℎ𝑝(oxDNA) 𝑟𝑢8−𝑚𝑒𝑟(*) 𝑟𝑢8−𝑚𝑒𝑟(oxDNA) 𝑟𝑠𝑐(*)

- - 2.08 ± 0.59 nm 1.29 ± 0.13 nm - 1.22 ± 0.32 nm -

0.85 nm 1.43 nm 2.08 ± 0.59 nm 1.29 ± 0.13 nm 1.40 nm 1.22 ± 0.32 nm 0.86 nm

1.28 nm 1.55 nm 2.08 ± 0.59 nm 1.19 ± 0.13 nm 1.23 nm 1.23 ± 0.33 nm 0.85 nm

1.70 nm 1.60 nm 2.08 ± 0.59 nm 1.19 ± 0.13 nm 1.16 nm 1.23 ± 0.33 nm 0.85 nm

2.13 nm 1.60 nm 2.08 ± 0.59 nm 1.19 ± 0.14 nm 1.14 nm 1.23 ± 0.33 nm 0.85 nm

2.56 nm 1.61 nm 2.08 ± 0.59 nm 1.29 ± 0.15 nm 1.12 nm 1.24 ± 0.33 nm 0.85 nm

TABLE S5. List of radius measurements used in the comparion of SPT with oxDNA thermodynamics. The parameter 𝑟𝑐 is the crowder
radius, 𝑟𝑢ℎ𝑝(*) is the fitted radii of the unfolded hairpin state, 𝑟𝑢ℎ𝑝(oxDNA) is the oxDNA measurement of the radius of the unfolded

hairpin state, 𝑟𝑓ℎ𝑝(oxDNA) is the oxDNA measurement of the radius of the folded hairpin state, 𝑟𝑢8−𝑚𝑒𝑟(*) is the fitted radii of the

unfolded duplex state (referred to as 8-mer), 𝑟𝑢8−𝑚𝑒𝑟(oxDNA) is the oxDNA measurement of the radius of the unfolded single strands
that may come together to form the duplex, and 𝑟𝑠𝑐(*) is the effective radii of the spherocylinder. All oxDNA measured radii are mean
values where the listed errors are the standard deviation in the mean.

of 𝜑 or 𝑟𝑐 for both the hairpin and the duplex systems, in
either folded or unfolded states. Additionally, the Table S5
also shows that as the effective radius of the unfolded single
strands increases somewhat from smallest crowder to largest
crowder, and is also independent of 𝜑 (not shown). Finally
the sphero-cylindrical radius of the duplex was observed to be
nearly independent of crowder size or volume fraction, 𝑟𝑠𝑐(*)
= 0.85 nm, significantly less than that measured previously
with oxDNA where 𝑟𝑠𝑐(oxDNA) = 1.15 nm.1

We rationalize that the radii measurements obtained by
oxDNA yield volumes for hard spheres that overestimate the
true volume occupied by the DNA. This is because, in oxDNA,
the ssDNA behaves as a freely jointed chain with excluded
volume and does not have a fixed geometry. Similarly in the
case of the duplex being modeled as a spherocylinder, DNA,
in reality, is cylindrical with blunt ends and not capped-ends
and so likely overestimates the true volume occupied by the
duplex.
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FIG. S3. The mean-square displacement (MSD) of the 8-mer ssDNA with crowders present. (A) Simulations with different volume
fraction 𝜑 occupied by crowders. (B) Simulations with different diffusion coefficients and different massses of crowders. 1 time unit =
3.03 ps

.

FIG. S4. The free-energy profile of the 8-mer duplex with excluded volume fractions of (A) 0.1, (B) 0.2, (C) 0.3, and (D) 0.4,
respectively.
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FIG. S5. The stem formation free-energy profile of a hairpin with a loop length of 10-nt. The panels show results where the excluded
volume fraction was set to (A) 0.1, (B) 0.2, (C) 0.3, and (D) 0.4, respectively.
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FIG. S6. The Van’t Hoff plots of the DNA 8-mer formation (A and B) and hairpin formation with stem length 6 and loop length 10 (C
and D). We compare the entropic contribution for a fixed crowder size of 0.85 nm with excluded volume fraction ranging from 0.1 to
0.3 (plots A and C), and for fixed excluded volume fraction 0.2 with radius ranging from 0.85 nm to 2.56 nm (plots B and D).
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FIG. S7. The effects of crowder parameters on the DNA 8-mer formation. The excluded volume is 0.2 and the crowder radius is 1.70
nm. (A) The overall reaction rate on the change of crowder mass. (B) The overall reaction rate on the change of crowder diffusion.
The change of mass and diffusion of crowding particles have very minor effects on the overall reaction rate of DNA hybridization.

FIG. S8. The kinetic comparison between hairpin closing of loop lengths 4 and 6 for the flux (FLUX), IF1 (transition probability
𝑃 (𝜆1

0|𝜆0
−1)) , and IF2 (𝑃 (𝜆2

1|𝜆1
0)) stages of the reaction. The overall relative 𝑘on and 𝑘off are also calculated for comparison.
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FIG. S9. The thermodynamics study of the hairpin with a loop length of 4-nt. (A) The melting temperature of the hairpin with a
loop length of 4 versus excluded volume fraction. (B) The free-energy profile of hairpin closing versus native base pairs formed under
various crowding conditions.

FIG. S10. The free-energy profile versus native base pairs formed for the DNA 8-mer hybridization, showing single base pair formation
up to 6 base pairs having formed.
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FIG. S11. The kinetic comparison of the strand displacement reaction at different excluded volume fractions. Showing flux (FLUX),
IF1 ( corresponding to transition probability 𝑃 (𝜆1

0|𝜆0
−1)), IF2 (𝑃 (𝜆2

1|𝜆1
0)), and IF3 ( 𝑃 (𝜆3

2|𝜆2
1))
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Šulc, John S Schreck, Flavio Romano, Thomas E Ouldridge, Roman
Tsukanov, Eyal Nir, Ard A Louis, et al. Introducing improved
structural properties and salt dependence into a coarse-grained model
of dna. The Journal of chemical physics, 142(23):06B613 1, 2015.

5J. SantaLucia, Jr. A unified view of polymer, dumbbell, and oligonu-
cleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad.
Sci. U.S.A, 17(95(4)):1460–5, 1998.

6D. Frenkel and B. Smit. Understanding Molecular Simulation. Aca-
demic Press Inc. London, 2001.

7S. Whitelam, E. H. Feng, M. F. Hagan, and P. L. Geissler. The role
of collective motion in examples of coarsening and self-assembly. Soft
Matter, 5:1251–1262, 2009.

8Glenn M Torrie and John P Valleau. Nonphysical sampling distribu-
tions in monte carlo free-energy estimation: Umbrella sampling. J.
Comp. Phys., 23(2):187–199, 1977.

9John Russo, Piero Tartaglia, and Francesco Sciortino. Reversible

gels of patchy particles: Role of the valence. J. Chem. Phys.,
131(1):014504, 2009.

10Loup Verlet. Computer” experiments” on classical fluids. i. thermody-
namical properties of lennard-jones molecules. Phys. Rev., 159(1):98,
1967.

11J. Lapham, J. P. Rife, P. B. Moore, and D. M. Crothers. Measurement
of diffusion constants for nucleic acids by NMR. J. Biomol. NMR,
10:252–262, 1997.

12T. Murtola, A. Bunkwer, I. Vattulainen, and M. Deserno. Multiscale
modeling of emergent materials: biological and soft matter. Phys.
Chem. Chem. Phys., 11:1869–1892, 2009.
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